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~
P( An important question in the stability and control of

~~~ stochastic systems is the determination of the limi ting long

time behavior of the system using a fixed control. This paper

answers that question in the case of a stochastic system per—

turbed by a small additive noise term where the control is

such that the corresponding deterministic system has a stable

limit cycle.

It is shown that in the limit of large time the stochastic

system is near the limit cycle. This is a stability result.

Moreover , one can compute approximately at which portion of the

limi t cycle one is most lik ely to be found. Further var ious

• ~~~ Stationary averages can be computed .

i..~j These results will be of use in designing approximate con-
• trols for stationary stochastic control systems. As a by—

~~~~ product, the above work allows one to deduce some additional

results on singular perturbation problems in partial differen-

tial equations.
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Stochastically Perturbed Limit Cycles
II~T*$Iu1IGl/ 1WLA24LIfl cosu

Charles J .  Holland 11s1 AVA I i__ R J J
1. Introduction. In this paper we examine the effe~t

-s -o

perturbing certain determ inistic dynamical systems possessing

a stable limit cycle by an additive white noise term with small

intensity. We place assumptions on the system guaranteeing

that when noise is present the corresponding random process

generates an ergodic probability measure . We then

determine the behavior of the invariant measure when the noise

intensity is small. This can be considered as a purely probabi-

listic result. Using this probabilistic result we are also able

to determine the limiting large time behavior of certain singu-

larly perturbed se~ ond order partial ~i•ffercntial equations

associated with the random process through It~ ’s rule.

For a model of our probabilistic process we consider the

It~ stochastic differential equation

f(~~)dt + (2e)~~
’2cy(~~)dw (t) . ()~)

In (1) 1 is an n vector, c~ is an n xk matrix, w is k dimensional

Brown lan motion and ~ is our small positive parameter. For ~ 0

we have the corresponding deterministic dynamical system. For

c > 0 denote by ~$(t) the solution to (1) with initial condition

~~(o) x. Then throughout the following assumptions are made.

_ _ _ _ _ _ _ _ _
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(Al ) f1, °ij are of class C2 (R ~ ).

(A2 ) For c 0 the system has a unique limit cycle denoted

by I’ .

(A3) There exists at most a finite number of critical points

• (places x~ where f ( x *) = o). At each critical point the

matrix f x (x*) has only eigenvalues with positive real

parts. At each critical point the m atrix a(x*)aT(x*) j~

positive definite.

(A4) For any compact set B not containing critical points and

any 6 > 0 there exists T > 0 (depending upon B, ~
) such

that if x c B, then

d(~~ (t),r) < 6 for t T

Here d denotes the Euclidean distance function.

(A5 ) There exists > 0 such that for 0 < < the stochastic

differcntial equation possesses an ergodic measure

with a density. For any 6 > 0 the re ex is ts  R > 0 such

that

< 6 for 0 < <

where 13(R) = [x: lx i < R).

Then we prove the following result.

Theorem 1. (ci). If’ B is any open set such that F c B, then

u r n  ~
5(B) = 1

c~O

~~~~~~~~~~~~~~
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(C2). If H is continuous and bounded , then

lirn f  H(x)d~~ (x) = ~f H(~
0( t ) ) d t  (2 )

where ~ is any point on F and T* is the period of

the cycle, ~
0(t) =

x x

We prove Theorem in Section 2 and discuss assumption (A5 )

there. From Theorem 1 we can immediately derive a result in

partial di f fe ren tial equations under the following additional

assumption.

(A6) There exists ~ > 0 such that for 0 < ~ the re is a

bounded solution uC on (t> o) XRn to

trace ( T ) + fu
~ 

—

~~~~~~~ 

= 0 (~
)

with initial condition uc(o,x) = H(x), x ~ R
n. The

function H is assumed continuous and bounded as in Theorem 1.

Assumption (AG) is discussed in Section 2.

The solution u5 to (3) sat isfies u5(t,x) = EH(E~~(t)). Since

(i) has for each ~ an ergodic measure, then, for all x

lim uE (t,x) =f H(y)d~ (
~

) • (4)
t~~~ RT

~

Hence we have the following
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Theorem 2. Assume (Al) - (A6). Then

T*

u8(t,x) = 7~f H(~
0(t))dt . (5)

E—’O t-’OD x

However, for any t > 0, no matter how large, we have

lim uE(t,x) = H(~~~(t)) . (6)
c-~0

See Fleming [11 , Theorem 4.i. Equations (5) arid (6) show that

caution must be observed when attempting to approximate the long

term behavior of a physical system subject to small random

disturbances.

In Section 3 we consider a class of problems for which both

the invariant measure and the limit cyc le F can be compute d

explicitly . We evaluate directly both sides of equation (2).

In earlier work ([61,17]) we have cons idered equation (1)

when the corresponding determinis t ic  dynamical system has the

origin as a globally asymptotically stable equilibrium point. In

Section 4 we consider that case and prove easily the following

Theorem 3. Assume (Al), (A5), and

( A 2 ’) .  For c = 0, (1) has a unique critical point at x~ = 0 which

is globally asymptotically stable.

Then, if B is any open set containing the origin

u r n  ~ (B) = 1 . ( 7)
e~0 ~

If H is continuous and bounded, then

— ~---—•---~~- • .•- •-—- ~~ - -- -—---- -—- ~~-.~~ ---- -
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u r n  f H(x)di.z. (x) = H(0) . (8)
c~0 R’~

Under stronger assumptions and using a completely different

technique we established in [ 6]  an expansion of the left  hand side

or (8) in powers •of c. One might attempt to derive such a result

for the left hand side of (2). We give an example to illustrate

the potential difficulty in deriving such an expansion without

strong assumptions.

• • - • —.- - .~~~~ .~~~~• • - • - - • 
~~~- - ‘ , ~~~~-
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2. In this section we first prove Theorem 1 and then discuss

assumptions (A5 ) and (A6).

Proof of Theorem 1. We first establish (ci). To do this we begin

by constructing for each critical point x~ a neighborhood N con-

taining x~ such that

u r n  ii. (N) = 0 . (9)
e-~O ~

For notational convenience let x~ = 0 denote a critical point.

Since assumption (A3 ) holds , there exists a positive defini te

matrix P, a positive constant c and a neighborhood Z of x~ = 0

such that if V ( x )  = ~~~~~ then Vxf > 0 in Z (see [5], p. 296) and

also trace ~~~~ > c in ~~. Now let c1, c2, M be positive constants

with c1 > c
2 

> M and such that the set S = [x : V (x )  < c~) c: Z.

Define Q (x: V (x) < c~~~~, N = (x :V(x) < M), and let 0 < -y < 1/2

be such that d(~ S,~~Q) > 2-y and d(~ N,~~Q) > 2-y . We shall need these

facts below.

We claim that (9) holds for the above N. Suppose not, then

we shall show (in a lengthy argument) that this leads to a contra-

dicti on. First, since (9) is assumed false, there exists a

positive number 6 such that lim .i. ( N )  > 6.  Using assumptions

(A5), (A3 ) we next choose R such that F c B(R), all critical

points lie in B(R-l), and p~5(B(R)°) 
< 6/6 for 0 < c < for some

fixed > 0.

For each e > 0, let ~~(t) be the solution to (1) with initial

condition distributed according to the measure j~~~. Define sets

C C C CK1, K2, K3, K1~ by

-. - — - ••.•— -— — —- - ;• • - •—

~

——---

~

-- --

~~~~

-

~

-—• .--—,—
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= (~~(~~
) c N, .r C 

> ~~~~, ~~6( 0) C N) ,

= (~~(~~
) c N, r 5 

~~~~, 
‘
~9O) N) ,

= (~~6 (~~~ ) c N, ~~(o) c B(R)-N)

= (~~
C(

2M) c N, ‘~~C
(~~~) ~ B(R)

C
)

where M is the maximum of V in N and r~ is the exit time of ~~ (t)

from N if ~~~ c N.

Since p 5(N) = P(~~~(t) c N) for any t 
> 0, then

.
4

~~~ 
P(K~) . 

(10)

We need to estimate the terms on the right side of the previous

equality. First, we have P(K~) 
< ö/6.

I~ t us estimate P(K~1 next. If x ~ N, let be the exit

time of ~~(t) from N. Then using the It~ stochasti.~ 
diffe rent ial

rule we have for any t > 0 that

EV(~~~(t A 1~~)) -EV(x)

t AT C

> Ef (V
~
f + s trace paaT)(~~~(t))dt > ~cE(tAr~ )

Then M > ccE(tAr~~) where 
M has been previously defined as the

maximum of V in i~. Theref ore for all q > 0

~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ •- -  -~~~ - - • -~~~~~~~~-- - .-~~~~ -•~~~~• -•- --~~~~~~~~ •~~~~~~~~ - - •  ~~~~~ -- •~~~~~~~~~~~~~~~~~ --
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Choosing q = ~~~~ , one obtains P( -r~ > ~!) ~ ~~~. From this fact we

have that P(K~) <

Let us now estimate P(K~ ). To do this we first derive the

estimate (ii ) below. Let T’ be chosen so that if x c S—N , then

c S~ for t >  T’ . Note that once the trajectory ~~ ( t )

leaves N(~ ,S) it never returns to N(Q,S). Using (A4), let R’ be

chosen so that

(~~~(t) : x c 13(R) , t > 0) c B(R’-l)

and R” be chosen so that

(~~~(t) : x c B(R’), t > 0) c B(R”—l)

Now choose T > T’ so that if X C  B (R’)-B(R), then ~~(t) C 13(R)

for t > T’ and d(~~~(t),~ B(R)) > 2-y for t > T’. This can be done

using (A4) and the fact that B(Rt ) -B (R-l) contains no critical

points. Now let x be any random initial condition such that

x c B (R’) wpl. Then standard estimates yield that

sup J~~
C ( t )  -~

0(t)l > < 2n exp (_ e
_l/~

’2
~ ) (ii)

0<t<T ~ x —

where n is the dimension of the space and ?~. is a constant depending

upon T and a bound on a, f
~
.on B(R”). See [1), Lemma 2.1 for a

derivation of (11).

Now for sufficiently small e so that T <

L 
_
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= p(~ C
(~~~) C N, 

‘~E(~~) c B (R)-N) .

~~~~~ 
C N, ~

‘
~(JT) q! B(R’) - ‘1

_ _ _  
“1

— j=l (.~~
5(kT) C B(R’)-Q, k =

+ p[~~ (~~ ) c N, ~~(kT) c B(R’)-Q, k = ~~~~~~~~ 
..

Using estimate (11) appropriately we have that

P(K ) < ([
~~ + l)2n 

exp

Note that P(K~) 
—

~ 0 as c .~~ 0.

It remains to estimate P(K~ ). The construction of the F

estimate for P(K~) is similar to that for P(K ) except that we

condi.tion upon the first time that ~~(t) exits from N. One obtains

that P(K~} — 0 as e ~ 0. •

Hence we have

However , this is impossible for 6 > 0. Thus 6 must be 0 and

therefore we can construct a neighborhood of the critical point

such that (9) holds.

Now suppose there are k critical points Xl)~~••~
Xk and let

be a neighborhood of x~ constructed by the above procedure.

Now take any compact set B not intersecting the cycle I’ nor

U N~. We claim 1TI~i it (B) = 0. Suppose not, then T~i~ ~~ (B) = 6
1=1 €1.0 ~ 40 ~

for some § > 0. Choose R so that B c B(R), each N~ c B(R) and 

-.~~~~~~~~-• - - -~~~~ •- - - -
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such that Ij.5(B(R)
C) < 6/6. Let u be such that d(F,B) > 2ci~. Then

k
choose T such that if x C B(R) - U N . ,  then d(~~~( t ) , F )  < w for

3-

t > T. Using the estimate (11) again we have that

sup I~~(t)- ~~(t)J > — +0 as c 1. 0 . (12)
O<t<T

Hence

= p [~ E (~~) e B] 
F

= p [~ E (~~) c B, ~E (~~) c B(R) - N~]

+ P[~~~(T) c B, ~
C

( O )  C U N.]
1=1 1

+ P[~~~(T) C B, 
‘~‘C

(~~~) ~ B(R)
c
)

Notice that the third term on the right side is bounde d ab ove by

6/6 and the second te rm by ~~~~ IL 5 (N ~~) which has limit 0 as e .J. 0.

Using estimate (12) we have that the first term has limit zero as

4. 0. Hence

§ ‘
~~ ~~~~~~~~ 

< 6/6
€4.0

contradicting the fact that 6 > 0. Therefore 6 = 0 and lim ~.i~ (B)= 0.
€4.0

We are now ready to establish (ci). Let B be any open set

containing r. For any R such that B c B ( R ) ,

1 = ~~~(B) +~~~(B(R) - B)  +~~~(B(R) ) •

< ii~ (B) +~~~(B(R) - B) ÷ 6

where § is a bound of ~i (B(R)
C
) for 0 < c < c

~
. Hence

L _______  ~~~~•~~~~~
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1 < liin p. (B)i-6. By taking R sufficiently large, one obtains
C

that the above inequality holds for 6 arbitrarily close to 0,

hence 1 = limn p. (B) and therefore (ci) holds.

We now prove (C2). Now for any t > 0

f
H(x)d~~~x = EH(~~~(t))

where, as before, ~~(o) is distributed according to the measure

In particular, then

f H(x)d~~ (x) =

where T* is the period of the cycle . Since the measure p. becomes

concentrated on the cycle F as c .1. 0 and H is bounded, we have that

u rn  fH(x)d~~ (x)

where y is any point on the limit cycle F. This completes the

proof of Theorem 1. Q.E.D.

Theorem 2 follows immediately from Theorem 1 as discussed

in the introduction. Let us now discuss first assumption (A5 )

and then (A6). Khasmninski [8], Wonham [10], Zakai [11], and

Kushner [9] have given criteria for the existence of an ergodic

measure p.s. The results of [8] and [9] depend upon ~~T being

uniformly positive definite while the others do not. The remaining

condition in (A5) depends upon the construction of an appropriate

Liapunov function, see [9] or [10]. A class of problems for which

(A5) is satisfied is the following:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(z) f(x) = Ax +ag(x), a is constant, g and Vg are bounded on RT1,

A has elgenvalues with negative real parts, (A,B) is

controllable and satisfies condition (co).

For a proof of this fact see the Examples on p. 227 and Corollary 6

on p. 228 in [9]. The definit ion of condition (co), a mild
restriction in normal applications, is given there . Controlla-

bility means that rank (B,AB,...,A”~~B) = n.

We now discuss (A6). If aaT is uniformly positive definite,

then conditions guaranteeing the existence of a smooth solution

can be fout-id in Theorem 12, p. 25 in [2]. However, it is not

necessary that aaT be positive definite to have a smooth solution,

see Theorem 1, p. 73 in [4).

-

~

-

~

--
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3. In some special cases the invariant measure can be computed

explicitly. The left hand side of’ (2) can then be evaluated

using Laplace ’s method. We illustrate that technique. L~t V(x)

be a smooth function such that

c1(e) =f exp (-V(x)/€)dx <

and let h ( x )  = (h1(x)~~...~ h~(x)) satisfy the equations

Vh•VV= 0 ,

d jv h = 0 .

Then the unique invariant probability density associated with the

stochastic differential equation

d~ ~VV(~~)+h (~~)dt + (2c)
1/2dw(t) (13)

is p~ (x) = c1(€r ’ exp (-V(x)/c). To prove thi s one simply checks

that p
~ 

satisfies the Fokker-Plan&equation.

Let x c R2, V (x )  = ( l _ x ~~_ 4 ) 2 
, h1(x) 

= 4x~ and h2(x)= -2x1.

Then F = (x x~ + 4 = 1) is a stable limit cycle whose domain of

attraction is R2- (0).

Let us evaluate D(c) 
~~2 
4d~~ (x). Thus

• 

. 
f 4 exp (-V(x)/c )dx

D(c) R

f 1 exp
R2

Making the change of variables s = x~+4, t = x1, and using

symmetry, one obtains that
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f f R1(s,t) exp (_ (l_s)2/2c)dtds
D(€) = 

0 0

ffR2(s,t) exp (-(l_s)
2/2€)dtds

where R1(s,t) = 
4_1
(~ t

2)_1
~
’4 and R2(s,t) = 4

l
(~~~~ t

2 )_3/4

Def ine M1(s) 
_—J R1(s,t)dt and M2(s) =J R2(s,t)dt. Utilizing

0 0
Laplace ’s method one obtains that

1 

(1_t
2
)
h/4dt

M (l)
u r n  D ( € )  = 

1 
= 

0 (i4)
€4.0 2~ 

/ 

2 /4f (i- t )~
0

Now let ~1( t ),  ~2 ( t )  be the solution to (13 ) with C = 0 and

= 0, 
~2
(0) = 1. Since ~~(t)+~~~(t) = 1, then the right hand

side of (2) is

T*/4 _________f  i]- -- ~~(t) dt
Making the change of variables a = ~1(t), one again obtains (14).

The conclusion of Theorem 1 holds for this example even though

assumption (A2 ) is not satisfied. Note that the matrix f
~
(O) has

0, 2 as eigenvalues.
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4. In this section we consider a new ease where the origin is

the unique critical point of (1) with e = 0 and is globally

asymptotically stable. It is then easy to establish TheoI’em 3

using a method similar to that employed in the proof of Theorem 1.

The details are omitted.

However, ~n [6) under stronger assumptions than in Theorem 3 T
we established an expansion

H(x)dp. (x) = C
0 ~- E  c~c

i +o (c’~ • (15)

valid for any positive integer k. The constants c~ can be found

by solving linear algebraic equations with C0 = H(O). Among the

assumptions in [6) are that the matrix f
~
(O) have only eigenvalues

with negative real parts. See [6] or [7] for details.

The expansion (15) is not always to be expected. Consider

= _~ 3d t ÷ ( 2C ) lh’2dw ( t ) .  Thi s equation has an invariant measure

for € > 0 given by B(c) exp (-x
4/4c) where 13(c) is a normalizing

constant. An easy calculation shows that

fx
2dp. (x) = c€ 1/2

for an appropriate constant C. This contradicts the expansion (15).

The d i f f icul ty  is that f~~( O )  = 0 so that the rate of approach to

the origin is too slow.

One might be tempted to derive an expansion of (2) in powers

of c. However, one will probably need an additional assumption

guaranteeing that the rate of approach of the deterministic tra-

jectorles to r near F is “sufficiently fast”. 

~~~—
—-- ---
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